3,729 research outputs found

    A Compact, High Resolution Hyperspectral Imager for Remote Sensing of Soil Moisture

    Get PDF
    Measurement of soil moisture content is a key challenge across a variety of fields, ranging from civil engineering through to defence and agriculture. While dedicated satellite platforms like SMAP and SMOS provide high spatial coverage, their low spatial resolution limits their application to larger regional studies. The advent of compact, high lift capacity UAVs has enabled small scale surveys of specific farmland cites. This thesis presents work on the development of a compact, high spatial and spectral resolution hyperspectral imager, designed for remote measurement of soil moisture content. The optical design of the system incorporates a bespoke freeform blazed diffraction grating, providing higher optical performance at a similar aperture to conventional Offner-Chrisp designs. The key challenges of UAV-borne hyperspectral imaging relate to using only solar illumination, with both intermittent cloud cover and atmospheric water absorption creating challenges in obtaining accurate reflectance measurements. A hardware based calibration channel for mitigating cloud cover effects is introduced, along with a comparison of methods for recovering soil moisture content from reflectance data under varying illumination conditions. The data processing pipeline required to process the raw pushbroom data into georectified images is also discussed. Finally, preliminary work on applying soil moisture techniques to leaf imaging are presented

    Spectral index selection method for remote moisture sensing under challenging illumination conditions

    Get PDF
    Remote sensing using passive solar illumination in the Short-Wave Infrared spectrum is exposed to strong intensity variation in the spectral bands due to atmospheric changing conditions and spectral absorption. More robust spectral analysis methods, insensitive to these effects, are increasingly required to improve the accuracy of the data analysis in the field and extend the use of the system to “non ideal” illumination condition. A computational hyperspectral image analysis method (named HIAM) for deriving optimal reflectance indices for use in remote sensing of soil moisture content is detailed and demonstrated. Using histogram analysis of hyperspectral images of wet and dry soil, contrast ratios and wavelength pairings were tested to find a suitable spectral index to recover soil moisture content. Measurements of local soil samples under laboratory and field conditions have been used to demonstrate the robustness of the index to varying lighting conditions, while publicly available databases have been used to test across a selection of soil classes. In both cases, the moisture was recovered with RMS error better than 5%. As the method is independent of material type, this method has the potential to also be applied across a variety of biological and man-made samples

    The percutaneous absorption of soman in a damaged skin porcine model and the evaluation of WoundStat™ as a topical decontaminant

    Get PDF
    PURPOSE: The aim of this study was to evaluate a candidate haemostat (WoundStat™), down-selected from previous in vitro studies, for efficacy as a potential skin decontaminant against the chemical warfare agent pinacoyl methylfluorophosphonate (Soman, GD) using an in vivo pig model. MATERIALS AND METHODS: An area of approximately 3 cm2 was dermatomed from the dorsal ear skin to a nominal depth of 100 µm. A discrete droplet of 14C-GD (300 µg kg-1) was applied directly onto the surface of the damaged skin at the centre of the dosing site. Animals assigned to the treatment group were given a 2 g application of WoundStat™ 30 s after GD challenge. The decontamination efficacy of WoundStat™ against GD was measured by the direct quantification of the distribution of 14C-GD, as well as routine determination of whole blood cholinesterase and physiological measurements. RESULTS: WoundStat™ sequestered approximately 70% of the applied 14C-GD. Internal radiolabel recovery from treated animals was approximately 1% of the initially applied dose. Whole blood cholinesterase levels decreased to less than 10% of the original value by 15 min post WoundStat™ treatment and gradually decreased until the onset of apnoea or until euthanasia. All treated animals showed signs of GD intoxication that could be grouped into early (mastication, fasciculations and tremor), intermediate (miosis, salivation and nasal secretions) and late onset (lacrimation, body spasm and apnoea) effects. Two of the six WoundStat™ treated animals survived the study duration. CONCLUSIONS: The current study has shown that the use of WoundStat™ as a decontaminant on damaged pig ear skin was unable to fully protect against GD toxicity. Importantly, the findings indicate that the use of WoundStat™ in GD contaminated wounds would not exacerbate GD toxicity. These data suggest that absorbent haemostatic products may offer some limited functionality as wound decontaminants.Peer reviewedFinal Accepted Versio

    Integrated fiber optic spectrally resolved downwelling irradiance sensor for pushbroom spectrometers

    Get PDF
    We present an integrated fiber optic spectrally resolved downwelling irradiance sensor for pushbroom hyperspectral imagers. The system comprises of a cosine corrector and custom fiber patch cables, collecting the ambient light in a large solid angle and feeding it directly to the entrance slit of the spectrometer. The system enables simultaneous measurement of downwelling and upwelling irradiance using the main hyperspectral camera sensor. As a demonstration, the spectral reflectance of a soil sample was measured with a RMSE of 8.4%, a significant improvement on the RMSE of 54% found without correction. At a weight of approximately 10 grams, this system provides a substantial weight saving over standalone incident light sensing instruments

    Estimation of bladder contractility from intravesical pressure–volume measurements

    Get PDF
    © 2016 Wiley Periodicals, Inc. Aims: To describe parameters from urodynamic pressure recordings that describe urinary bladder contractility through the use of principles of muscle mechanics. Methods: Subtracted detrusor pressure and voided flow were recorded from patients undergoing filling cystometry. The isovolumetric increase of detrusor pressure, P, of a voluntary bladder contraction before voiding was used to generate a plot of (dP/dt)/P versus P. Extrapolation of the plot to the y-axis and the x-axis generated a contractility parameter, vCE (the maximum rate of pressure development) and the maximum isovolumetric pressure, P0, respectively. Similar curves were obtained in ex vivo pig bladders with different concentrations of the inotropic agent carbachol and shown in a supplement. Results: Values of vCE, but not P0, diminished with age in female subjects. vCE was most significantly associated with the 20–80% duration of isovolumetric contraction t20–80; and a weaker association with maximum flow rate and BCI in women. P0 was not associated with any urodynamic variable in women, but in men was with t20–80 and isovolumetric pressure indices. Conclusions: The rate of isovolumetric subtracted detrusor pressure (t20–80) increase shows a very significant association with indices of bladder contractility as derived from a derived force–velocity curve. We propose that t20–80 is a detrusor contractility parameter (DCP). Neurourol. Urodynam. 36:1009–1014, 2017. © 2016 Wiley Periodicals, Inc

    Positive Selection by Purified MHC Class II / Thymic Epithelial Cells In Vitro: Costimulatory Signals Mediated by B7 Are Not Involved

    Get PDF
    We have investigated the possibility that the costimulatory signals required for activation of mature T cells also play a role in providing differentiation signals for positive selection during T-cell development. We show that purified MHC Class II+ thymic epithelial cells are able to support positive selection in vitro but lack both the functional capacity to deliver costimulatory signals and expression of the costimulatory ligand B7. Our results suggest that the additional signals provided by costimulatory ligands are not required for TCR-mediated positive selection, although other ancillary signals provided by thymic epithelial cells may be involved

    Advancing values-based approaches to climate change adaptation : a case study from Australia

    Get PDF
    Coastal flooding affects physical and social place attachments. Values-based approaches to climate change adaptation examine how risks to place attachments are distributed within and among communities, with a view to informing equitable adaptation policies. In this nascent body of research, divergent theoretical frameworks and empirical approaches to measuring social values are evolving. While some studies explore the things people value about their everyday lives generally—the lived values approach, others locate specific social and cultural values in geographic space—the landscape values mapping approach. This study aims to compare the explanatory value of these two approaches for understanding the social risks of sea-level rise, and appraise whether either or both approaches are likely to meet local adaptation planning needs. It does this by examining the potential social impacts of sea-level rise in Kingston Beach, Australia, informed by a mail-out survey of the community. The lived values approach identified that the natural environment, scenery, relaxed lifestyle and safety are highly important to local residents, while the landscape values mapping approach revealed that Kingston Main Beach is the most highly valued of eight coastal landscape units. Incorporating the landscape values mapping into the lived values cluster analysis revealed that while Kingston Main Beach is highly important for its recreational value to some members of the community, for others manmade features such as community halls or sports ovals may be of higher importance because they facilitate social interactions. There is potential to further integrate these two approaches to better inform adaptation policy about how lived and landscape values are distributed among communities, where they are located in space and whether they change over time. A deeper understanding of such assigned values can lead to improved engagement with coastal residents to inform adaptation policy now and into the future

    Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System

    Get PDF
    The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%

    Grain Sorghum Variety Trial Archive

    Get PDF
    This report features the available sorghum data from 2003-2017. Crop performance testing results are released annually through the activities of SDSU Extension and the South Dakota Agricultural Experiment Station at SDSU

    Selective serotonin reuptake inhibitors in pediatric depression: is the balance between benefits and risks favorable?

    Get PDF
    Recent controversies surrounding the use of selective serotonin reuptake inhibitors (SSRIs) have highlighted the need to reassess potential benefits, as well as potential risks of this class of medications in the treatment of pediatric depression. The recent availability of data from meta-analyses of published and unpublished antidepressant trials, epidemiological studies, and the Treatment for Adolescents with Depression Study (TADS) has facilitated a reanalysis of this risk/benefit relationship. Despite reviewing similar data, various regulatory agencies have arrived at rather disparate conclusions regarding the data, resulting in continued controversy. Although all groups appear to agree that careful assessment, education regarding risks, and closer monitoring are essential for SSRIs, only the U.S. Food and Drug Administration (FDA) and the U.K. Medicine and Health Care Products Regulatory Agency maintain that an acceptable risk/benefit relationship exists for fluoxetine. The European Medicines Agency concluded that the SSRIs should not be used in the treatment of depression in children and adolescents. The authors of this review have taken into consideration many of these same data and offer a critical discussion of the pros and cons of SSRIs in pediatric depression. The authors have concluded that SSRIs -- in particular, fluoxetine -- do have a role in the treatment of pediatric depression
    • …
    corecore